

Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation

Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel

LMU Munich & Munich Center for Machine Learning (MCML), Munich, Germany

ICLR 2024, Spotlight Presentation

Introduction: Representation learning for CATE estimation

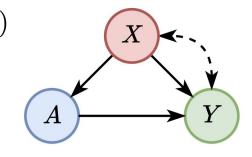
Why this is important?

- State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning
- Low-dimensional (potentially constrained) representations reduce the variance, but, at the same time lose information about covariates, including information about confounders

Given i.i.d. observational dataset $\mathcal{D} = \{X_i, A_i, Y_i\}_{i=1}^n \sim \mathbb{P}(X, A, Y)$ covariates

binary treatments

(r) continuous (factual) outcomes



Problem formulation: representation-based CATE estimation

Representation learning methods estimate the conditional average treatment effect (CATE)

$$\tau^{x}(x) = \mathbb{E}(Y[1] - Y[0] \mid X = x)$$

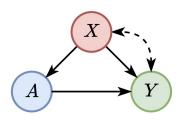
by (1) learning a low-dimensional (potentially constrained) representation $\Phi(\cdot): X \to \Phi(X)$ and by (2) estimating CATE wrt. representations

$$au^\phi(\phi)=\mathbb{E}(Y[1]-Y[0]\mid \Phi(X)=\phi)=\mu_1^\phi(\phi)-\mu_0^\phi(\phi)\quad \mu_a^\phi(\phi)=\mathbb{E}(Y\mid A=a,\Phi(X)=\phi)$$

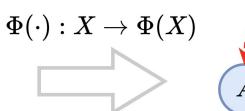
Introduction: Representation-induced confounding bias

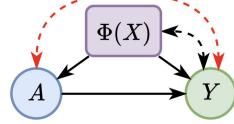
- Constraints on the low-dimensional representations include:
 - \circ treatment balancing with a probability metric: dist $[\mathbb{P}(\Phi(X) \mid A=0), \mathbb{P}(\Phi(X) \mid A=1)] \approx 0$
 - \circ invertibility: $\Phi^{-1}(\Phi(X)) \approx X$
- Such low-dimensional representations can lead to a representation-induced confounding bias (RICB), which we want to estimate / bound

Problem formulation: representation-induced confounding bias



Original causal diagram





Transformed causal diagram

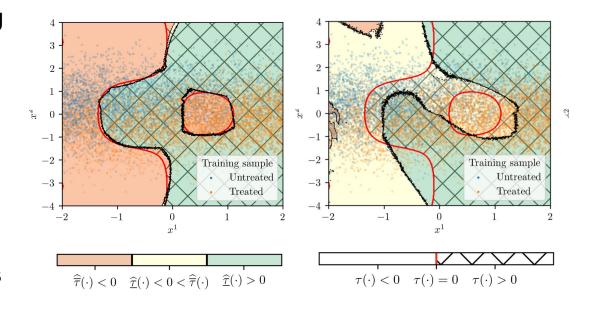
Introduction: Research gap – Our contributions

Research gap

 No work has studied the confounding bias (RICB) in low-dimensional (constrained) representations for CATE estimation

Our contributions

- We formalize the representation-induced confounding bias (RICB)
- We propose a neural framework for estimating bounds based on the Marginal Sensitivity Model, which can be seen as a refutation method for representation learning CATE estimators
- We show that the estimated bounds are highly effective for the CATE-based decision-making



Representation learning for CATE estimation: Assumptions

- Potential outcomes framework (Neuman-Rubin):
 - \circ (i) Consistency. If A=a is a treatment for some patient, then Y=Y[a]
 - (ii) Positivity (Overlap). There is always a non-zero probability of receiving/not receiving any treatment, conditioning on the covariates: $\epsilon > 0$, $\mathbb{P}(1 \epsilon \ge \pi_a(X) \ge \epsilon) = 1$
 - o (iii) Exchangeability (Ignorability). Current treatment is independent of the potential outcome, conditioning on the covariates $A \perp Y[a] \mid X$ for all a.
- Under assumptions (i)–(iii) CATE is identifiable

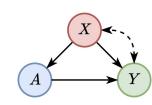
$$\tau^x(x) = \mu_1^x(x) - \mu_0^x(x) \qquad \mu_a^x(x) = \mathbb{E}(Y \mid A = a, X = x)$$

Implicit partitioning assumption

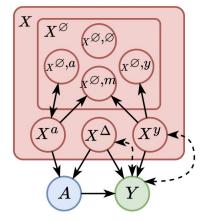
Identifiability

assumptions

- We assume an implicit partitioning (clustering) of X on $\{X^\varnothing, X^a, X^{\bar{y}}, X^\Delta\}$
 - (1) noise
 - (2) instruments
 - (3) outcome-predictive covariates
 - (4) confounders



Original causal diagram

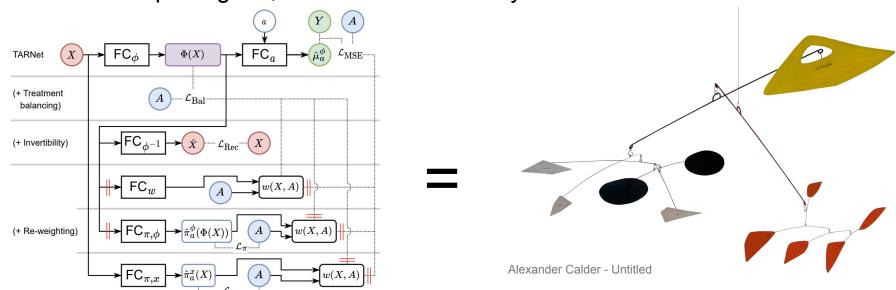


Clustered causal diagram

Representation learning for CATE estimation: Methods

- Meta-learners (DR-learner, R-learner, etc.) can obtain the best asymptotic
 performance and other properties by fitting several models (nuisance functions
 and pseudo-outcome regression)
- Representation-based CATE estimators aim at best-in-class estimation with one model, but contain many trade-offs

Meta-learners vs. representation-based CATE estimators In low-sample regime, there is no universally best solution¹

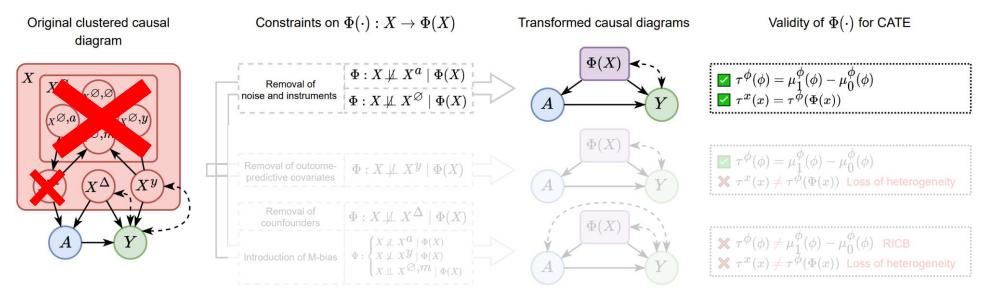


Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In International Conference on Artificial Intelligence and Statistics, 2021.

Types of representations: Valid representations

- We call a representation $\Phi(\cdot)$ valid for CATE if it satisfies the following two equalities: $\tau^x(x) \stackrel{(i)}{=} \tau^\phi(\Phi(x)) \quad and \quad \tau^\phi(\phi) \stackrel{(ii)}{=} \mu_1^\phi(\phi) \mu_0^\phi(\phi)$ with $\mu_a^\phi(\phi) = \mathbb{E}(Y \mid A = a, \Phi(X) = \phi)$
- Examples of valid representations:
 - Invertible representations (still help to reduce the variance when balanced)¹
 - \circ Removal of noise and instruments (achieved via balancing or lowering $\,d_{\phi}$)

Valid representations



¹ Fredrik D. Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and representation learning for estimation of potential outcomes and causal effects. Journal of Machine Learning Research, 23:7489–7538, 2022.

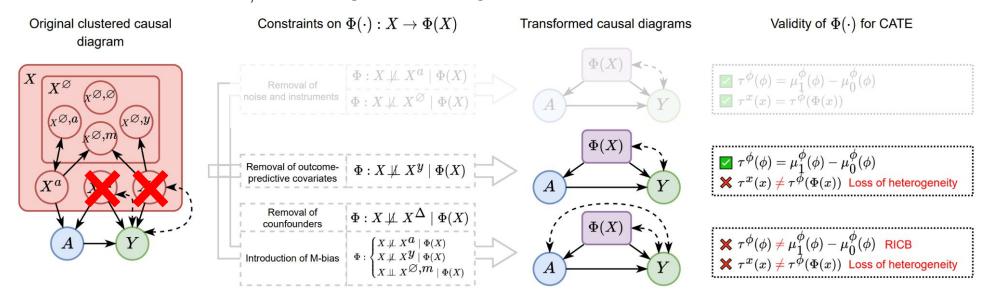
Types of representations: Loss of heterogeneity

(i) Loss of heterogeneity: the treatment effect at the covariate (individual) level is different from the treatment effect at the representation (aggregated) level:

$$\tau^x(x) \neq \tau^\phi(\Phi(x))$$

- Happens whenever some information about X^{Δ} or X^{y} is lost in the representation. E.g., propensity score is such a representation.
- ullet Reasons: too low $\,d_\phi$, too large balancing

Invalid representations



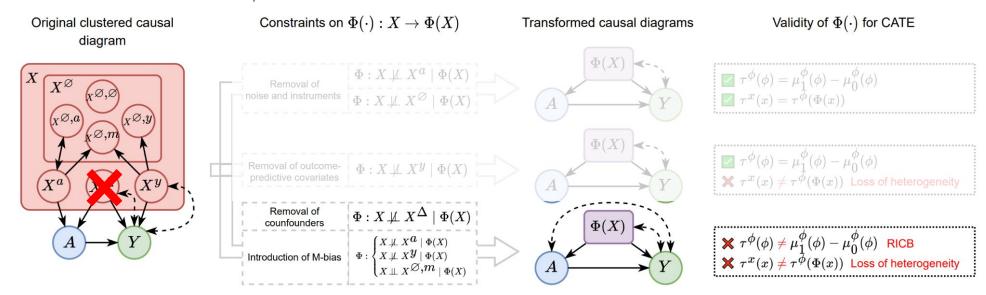
Types of representations: RICB

(i) Representation-induced confounding bias (RICB): CATE wrt. representations is non-identifiable from observational data $\mathbb{P}(\Phi(X),A,Y)$

$$au^\phi(\phi)
eq \mu_1^\phi(\phi) - \mu_0^\phi(\phi)$$

- Happens whenever some information about X^{Δ} is lost in the representation or when M-bias is induced (this is rather a theoretic concept)
- ullet Reasons: too low $\,d_\phi$, too large balancing

Invalid representations



Types of representations: Takeaways

The minimal sufficient and valid representation would aim to remove only the information about noise and instruments

Takeaways

- The loss of heterogeneity does not introduce bias but can only make CATE less individualized, namely, suitable only for subgroups
- The RICB automatically implies a loss of heterogeneity => We consider the RICB to be the main problem in representation learning methods for CATE
- RICB is an infinite-sample confounding bias (not a low-sample bias), present in the representations

Partial identification of CATE under the RICB: Related work

Why is the direct inference of the RICB hard?

Directly estimating RICB is (1) impractical and (2) intractable:

$$\tau^{\phi}(\Phi(x)) = \int_{\mathcal{X}_{\Delta} \times \mathcal{X}_{Y}} \overset{\star}{\mathbb{P}(X^{\Delta} = x^{\Delta}, X^{y} = x^{y} \mid \Phi(x)) \, dx^{\Delta} \, dx^{y}} \neq \tau^{x}(x)$$

ullet The partitioning of X is unknown as well $\{X^arnothing, X^a, X^{ar{y}}, X^\Delta\}$

Methods, affected by the RICB

Method	Invertibility	Balancing with	
		empirical probability metrics	loss re-weighting
TARNet (Shalit et al., 2017; Johansson et al., 2022)	= 3		- 8
BNN (Johansson et al., 2016); CFR (Shalit et al., 2017; Johansson et al., 2022); ESCFR (Wang et al., 2024)	=	IPM (MMD, WM)	_
RCFR (Johansson et al., 2018; 2022)	 3	IPM (MMD, WM)	Learnable weights
DACPOL (Atan et al., 2018); CRN (Bica et al., 2020); ABCEI (Du et al., 2021); CT (Melnychuk et al., 2022); MitNet (Guo et al., 2023); BNCDE (Hess et al., 2024)	-	JSD (adversarial learning)	- 1
SITE (Yao et al., 2018)	Local similarity	Middle point distance	=:
CFR-ISW (Hassanpour & Greiner, 2019a); DR-CFR (Hassanpour & Greiner, 2019b); DeR-CFR (Wu et al., 2022)	=	IPM (MMD, WM)	Representation propensity
DKLITE (Zhang et al., 2020)	Reconstruction loss	Counterfactual variance	=
BWCFR (Assaad et al., 2021)	<u></u>	IPM (MMD, WM)	Covariate propensity
PM (Schwab et al., 2018); StableCFR (Wu et al., 2023)			Upsampling via matching

IPM: integral probability metric; MMD: maximum mean discrepancy; WM: Wasserstein metric; JSD: Jensen-Shannon divergence

Partial identification of CATE under the RICB: MSM

 Our idea is to employ a Marginal sensitivity model (MSM)¹ to perform the partial identification of the CATE (= find bounds on the RICB):

$$\Gamma(\phi)^{-1} \le \left(\pi_0^{\phi}(\phi)/\pi_1^{\phi}(\phi)\right) \left(\pi_1^x(x)/\pi_0^x(x)\right) \le \Gamma(\phi) \quad \text{for all } x \in \mathcal{X} \text{ s.t. } \Phi(x) = \phi.$$

where the sensitivity parameters can be estimated from the combined data $\mathbb{P}(X,\Phi(X),A,Y)$

Under the sensitivity constraint, the bounds on the RICB are given by

Marginal sensitivity model

$$\underline{\tau^{\phi}}(\phi) = \underline{\mu_1^{\phi}}(\phi) - \overline{\mu_0^{\phi}}(\phi) \quad \text{and} \quad \overline{\tau^{\phi}}(\phi) = \overline{\mu_1^{\phi}}(\phi) - \underline{\mu_0^{\phi}}(\phi)$$

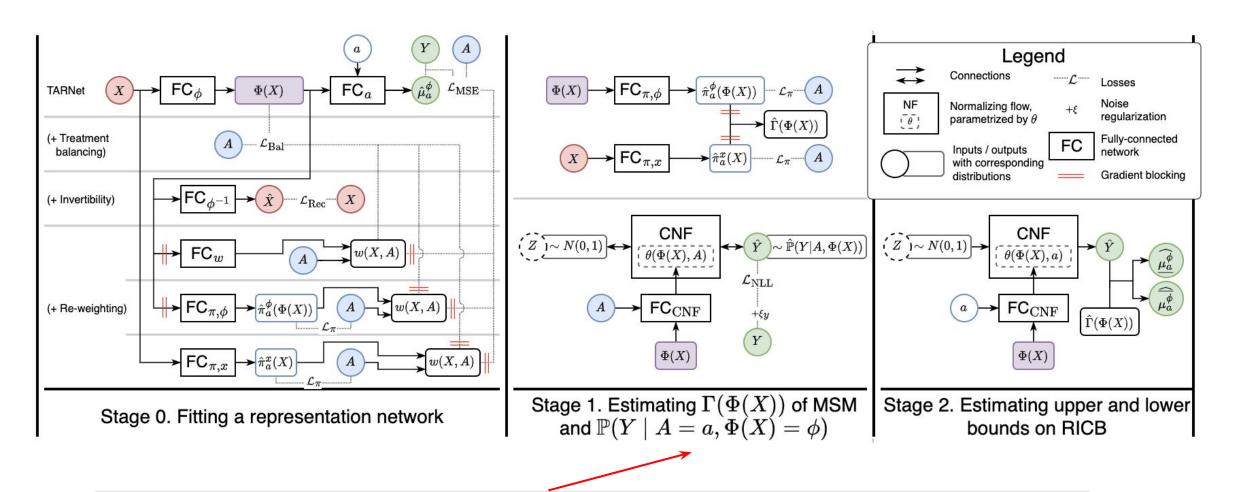
$$\underline{\mu_a^{\phi}}(\phi) = \frac{1}{s_{-}(a,\phi)} \int_{-\infty}^{\mathbb{F}^{-1}(c_{-}|a,\phi)} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y + \frac{1}{s_{+}(a,\phi)} \int_{\mathbb{F}^{-1}(c_{-}|a,\phi)}^{+\infty} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y,$$

$$\overline{\mu_a^{\phi}}(\phi) = \frac{1}{s_{+}(a,\phi)} \int_{-\infty}^{\mathbb{F}^{-1}(c_{+}|a,\phi)} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y + \frac{1}{s_{-}(a,\phi)} \int_{\mathbb{F}^{-1}(c_{+}|a,\phi)}^{+\infty} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y,$$

- The bounds are valid wrt. the original CATE and sharp wrt. the sensitivity constraint
- The bounds are still conservative, i.e., they do not distinguish instruments from confounders (but to do that we would need the original CATE)
- Yet, other sensitivity models, e.g., outcome sensitivity model, are impractical

Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of the American Statistical Association, 101(476):1619–1637, 2006.

Partial identification of CATE under the RICB: Neural framework



 $\hat{\Gamma}(\phi_i)$ is a maximum over all $\hat{\Gamma}(\Phi(x_j))$, where $\Phi(x_j)$ are the representations of the training sample in δ -ball around ϕ_i . δ is the only hyper-parameter

Experiments: Baselines – Evaluation – Datasets

- We evaluate our refutation framework together with SOTA representation-based CATE estimators: TARNet, BNN, CFR, InvTARNet, RCFR, CFR-ISW, BWCFR
- To compare our bounds with the point estimates, we employ an error rate of the policy (ER):
 - a policy based on the point estimate of the CATE applies a treatment whenever the CATE is positive:

$$\hat{\pi}(\phi) = \mathbb{1}\{\widehat{\tau^{\phi}}(\phi) > 0\}$$

- a policy based on the bounds on the RICB has three decisions:

 - $\qquad \qquad \textbf{(2) to do nothing} \quad \widehat{\overline{\tau^\phi}}(\phi) < 0$
 - (3) to defer a decision, otherwise
- We used 1 synthetic and 2 semi-synthetic datasets (IHDP100, HC-MNIST)

Baselines

Evaluation

Datasets

Experiments: Results

 Our framework achieves clear improvements in the error rate among all the baselines, without deferring too many patients

	$ER_{out} (\Delta ER_{out})$		
d_{ϕ}	1	2	
TARNet	30.79% (-12.89%)	9.82% (-3.73%)	
BNN (MMD; $\alpha = 0.1$)	34.32% (-15.41%)	16.15% (-4.19%)	
CFR (MMD; $\alpha = 0.1$)	35.01% (-14.27%)	11.92% (-5.54%)	
CFR (MMD; $\alpha = 0.5$)	35.79% (-11.43%)	17.89% (-7.27%)	
CFR (WM; $\alpha = 1.0$)	34.97% (-14.27%)	10.88% (-7.97%)	
CFR (WM; $\alpha = 2.0$)	35.18% (-13.63%)	13.19% (-6.28%)	
InvTARNet	29.51% (-0.95%)	5.64% (-0.02%)	
RCFR (WM; $\alpha = 1.0$)	33.02% (-3.58%)	8.00% (-4.27%)	
CFR-ISW (WM; $\alpha = 1.0$)	35.00% (-9.43%)	7.27% (-1.86%)	
BWCFR (WM; $\alpha = 1.0$)	34.97% (-10.02%)	7.44% (-4.57%)	

	$ER_{out}\left(\Delta\:ER_{out}\right)$			
d_{ϕ}	7	39	78	
TARNet	11.21% (-2.59%)	10.91% (-3.34%)	11.01% (-2.62%)	
BNN (MMD; α = 0.1) CFR (MMD; α = 0.1) CFR (MMD; α = 0.5) CFR (WM; α = 1.0) CFR (WM; α = 2.0)	12.00% (-4.50%) 11.40% (-1.89%) 16.01% (+19.25%) 24.55% (-10.42%) 31.71% (-10.34%)	11.37% (-5.29%) 11.05% (-3.13%) 12.55% (-4.95%) 27.87% (-10.18%) 30.77% (-7.22%)	20.78% (-2.01%) 11.73% (-4.67%) 12.90% (-5.25%) 31.19% (-11.53%) 31.83% (-11.91%)	
InvTARNet	12.18% (-1.29%)	11.38% (-3.98%)	11.55% (-4.34%)	
RCFR (WM; α = 1.0) CFR-ISW (WM; α = 1.0) BWCFR (WM; α = 1.0)	21.51% (-9.17%) 32.64% (-10.32%) 13.62% (-3.96%)	26.97% (-6.17%) 26.66% (-11.30%) 28.18% (+0.24%)	30.14% (-14.26%) 30.02% (-13.31%) 32.54% (-6.75%)	

Classical CATE estimators: k-NN: 8.18%; BART: 17.37%; C-Forest: 16.10%

Lower = better. Improvement over the baseline in green, worsening of the baseline in red Classical CATE estimators: k-NN: 22.34%; BART: 17.51%; C-Forest: 17.65%

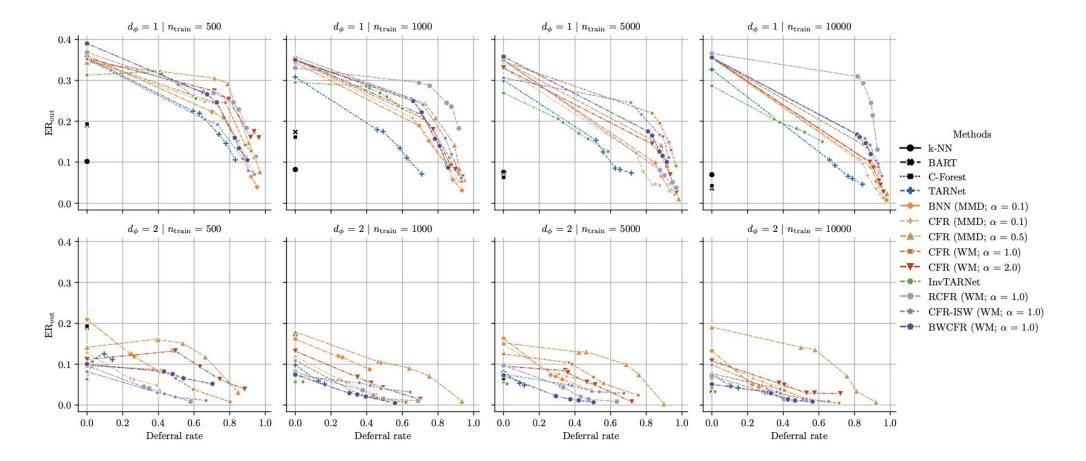
			ER_{out} (Δ ER_{out})		
$d_{m{\phi}}$	5	10	15	20	25
TARNet	3.17% (-2.65%)	2.88% (-2.30%)	3.28% (-2.74%)	3.23% (-2.52%)	2.89% (-2.37%)
BNN (MMD; α = 0.1) CFR (MMD; α = 0.1) CFR (MMD; α = 0.5) CFR (WM; α = 1.0) CFR (WM; α = 2.0)	2.32% (-1.49%) 1.77% (-0.89%) 2.07% (-1.46%) 1.93% (-0.89%) 1.97% (-0.04%)	2.43% (-1.40%) 2.09% (-1.03%) 2.00% (+3.98%) 1.75% (-0.25%) 2.17% (-1.49%)	2.59% (-2.03%) 2.23% (-1.63%) 2.68% (+1.89%) 1.83% (-1.24%) 2.05% (-1.21%)	2.43% (-1.87%) 1.88% (-0.48%) 2.36% (+6.37%) 1.83% (-0.49%) 2.08% (-1.29%)	2.29% (-1.16%) 2.04% (-1.46%) 2.17% (+3.41%) 1.80% (-0.20%) 2.09% (-1.36%)
InvTARNet	2.52% (-1.95%)	3.11% (-2.47%)	2.99% (-2.51%)	2.79% (-2.41%)	$2.83\% \; (-2.28\%)$
RCFR (WM; α = 1.0) CFR-ISW (WM; α = 1.0) BWCFR (WM; α = 1.0)	3.36% (-2.84%) 2.24% (-0.96%) 3.57% (-1.49%)	3.45% (-1.52%) 1.93% (-0.68%) 3.52% (-2.16%)	2.67% (-1.57%) 1.71% (-1.18%) 3.88% (-1.10%)	4.69% (-3.83%) 1.85% (-1.54%) 3.80% (-2.38%)	1.95% (+1.06%) 1.88% (-0.19%) 4.07% (-1.18%)

Lower = better. Improvement over the baseline in green, worsening of the baseline in red Classical CATE estimators: k-NN: 7.47%; BART: 5.07%; C-Forest: 6.28%

Results

Experiments: Results

Ablation study on δ shows, that the bounds remain valid under different values



Results

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

INSTITUTE OF ARTIFICIAL
INTELLIGENCE (AI) IN MANAGEMENT

Conclusion

We studied the validity of representation learning for CATE estimation. The validity may be violated due to low-dimensional representations as these introduce a representation-induced confounding bias.

As a remedy, we introduced a novel, representation-agnostic refutation framework that estimates bounds on the RICB and thus improves the reliability of their CATEs.

GitHub: github.com/Valentyn1997/ RICB

ArXiv Paper: arxiv.org/abs/2311.11321